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Agenda

● Intro
● Shortest Path
● Weighted Edges
● Single-Source Shortest Path Algorithms

○ Brute force Method
○ Relaxation Method
○ Bellman-Ford Algorithm
○ Dijkstra’s Algorithm (next lecture)



Reading Assignment

● Read Chapter 28 - Graphs
○ Chapter 23 (Read about: Examples and Terms, Traversals, DFS, BFS)



Path

Consider a network:



Path

● Can you use DFS or BFS to find a path? YES
○ Start by performing DFS or BFS from (starting node)
○ Continue algorithm until (target node) is processed
○ If target node is not found: Path doesn’t exist

Question:
● How does the process work with ambiguous paths (loops)?
● Does this process identify the optimal path?



Weighted Graphs

Network Example
● In the network, each wire might have a "cost" associated with using the 

wire. The cost could be the amount of energy required to use the path, or 
the amount of time required for the wire to transmit a message, etc.

● We want to find the path with the lowest total cost 
○ (the path with the lowest possible sum of its edge costs - shortest 

path).



Weighted Graph Contd.

● Use a digraph in which each 
edge has a non-negative value 
attached to it, called the weight 
or cost of the edge.



ICE 11.1 Weighted Graph

Questions:
1. How many paths are there 

from V0 to V2?
2. What is the path with the 

lowest total cost (shortest 
path)?



Concepts

● A weighted edge is an edge together with a non-negative integer called the 
edge's weight.

● The weight of a path is the total sum of the weights of all the edges in the 
path.

● If two vertices are connected by at least one path, then we can define the 
shortest path between two vertices, which is the path that has the smallest 
weight. 
○ Note: (There may be several paths with equally small weights, in which case each of the 

paths is called "smallest").



Shortest Path

● Finding the shortest path is extremely useful (real-world application):
○ So… How can we find it... programmatically

● Let’s Define the problem



Shortest Path Definition

Given a directed graph: 

● G = (V, E)
● edge-weight function w: E -> R
● path p = v1->v2-> ... ->vk
● weight of p, denoted w(p), is w(v1, v2) + w(v2, v3) + ... + w(vk-1, vk).

A shortest path weight δ(u, v) from u to v is the weight of any such shortest path:

● δ(u, v) = min{w(p): p is a path from u to v}
● If there is no path from u to v, then neither is there a shortest path from u to v. 

○ Define δ(u, v) = ∞ in this case.



Shortest Path Contd.

● A shortest path from u to v might not exist, even though there is a path 
from u to v.

● Note: When the edges have negative edge weights, some shortest paths 
may not exist.
○ Example: Negative weights...

● Negative weight cycle: c = v1->v2-> ... ->vk->v1 has w(c) < 0. 
○ Define δ(u, v) = -∞ if there's a path from u to v that visits a negative weight cycle.



Shortest Path Problem

Problem: 

From a given source vertex s in V, find the shortest path weights for all vertices in V.

Solution:

Given a directed graph G = (V, E) with edge-weight function w: E -> R, and a source vertex 
s

compute δ(s, v) for all v in V.



Shortest Path Solutions

● Single-Source Shortest Path Algorithms

○ Relaxation algorithm: framework for most shortest path problems. Not 
necessarily efficient

○ Bellman-Ford algorithm: deals with negative weights, slow but polynomial
○ Dijkstra's algorithm: fast, requires non-negative weights



Brute Force Method

Pseudocode

Distance(s, t):

  for each path p from s to t: 

compute w(p)

  return p encountered with smallest w(p)

Problems

● The number of paths can be infinite when 
there's negative-weight cycles.  

● Let’s assume there's no negative-weight 
cycles, the number of paths can be 
exponential.

Can be very inefficient…. 

Are there better ways?



Relaxation Method

Overview:

● Compute the distances instead of the 
shortest path. 

● Once the minimum distance is computed, 
the path that makes the distance can be 
easily found.

Steps:

● Distance from any vertex to itself = 0
● Begin with overestimated distance to 

every vertex, set distance to positive 
infinity

● Iterate over the edges, factoring in the 
distance cost to each vertex.
○ If a distance is found with a lower cost, 

update the distance.



Relaxation Method Contd.

Pseudocode

for v in V:

v.d = infinity 

s.d = 0

while some edge (u, v) has v.d > u.d + w(u,v):

pick such an edge (u, v)

  relax(u, v):

if v.d > u.d + w(u,v):

  v.d = u.d + w(u,v)

Note:

● Iterate over the edges, factoring in the distance 
cost to each vertex.
○ If a distance is found with a lower cost, 

update the distance.
○ This means a shorter path to v by way of u



Relaxation Pitfalls

1. If a negative-weight cycle is reachable 
from source s, then the relaxation can 
never terminate. 

2. A poor choice of relaxation order can lead 
to exponentially many relaxations.

Pseudocode

for v in V:

v.d = infinity 

s.d = 0

while some edge (u, v) has v.d > u.d + w(u,v):

pick such an edge (u, v)

  relax(u, v):

if v.d > u.d + w(u,v):

  v.d = u.d + w(u,v)



Bellman-Ford Algorithm

● The Bellman-Ford algorithm: computes single-source shortest paths in a 
weighted diagraph. 
○ Named after its developers, Richard Bellman and Lester Ford, Jr. 

● The Bellman-Ford algorithm is used primarily for graphs with negative 
weights. 



Bellman-Ford Limits

● Note: The algorithm can detect negative cycles and report their existence, 
but it cannot produce a correct "shortest path" if a negative cycle is 
reachable from the source.

● For graphs with non-negative weights, Dijkstra's algorithm (next lecture) 
solves the problem. Make sure to consider the limits when picking an 
algorithm to solve a problem.



Bellman-Ford Algorithm

Pseudocode Process

● The algorithm simply relaxes all the edges, 
and does this |V|-1 times

● |V| is the number of vertices in the graph. 
● The repetitions allow minimum distances 

to propagate accurately throughout the 
graph, since in the absence of negative 
cycles, the shortest path can visit each 
node at most only once.



Bellman-Ford Example

Problem: Find the shortest path from 0 to all 
other vertices



Bellman-Ford Example



Bellman-Ford Example



Bellman-Ford Example



Bellman-Ford Example



Begin 1st Iteration























Begin 2nd Iteration















3rd Iteration omitted for brevity 
(no changes to distances were found)







Bellman-Ford Performance

Best Case: O(|E|)

● Graph is a simple chain, only path is the optimal path.

Worst Case: O(|V||E|)

● Outer for loop runs at |V|
● Inner for loop runs at |E|
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