
11 - Pathfinding
Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA

Agenda

● Intro
● Shortest Path
● Weighted Edges
● Single-Source Shortest Path Algorithms

○ Brute force Method
○ Relaxation Method
○ Bellman-Ford Algorithm
○ Dijkstra’s Algorithm (next lecture)

Reading Assignment

● Read Chapter 28 - Graphs
○ Chapter 23 (Read about: Examples and Terms, Traversals, DFS, BFS)

Path

Consider a network:

Path

● Can you use DFS or BFS to find a path? YES
○ Start by performing DFS or BFS from (starting node)
○ Continue algorithm until (target node) is processed
○ If target node is not found: Path doesn’t exist

Question:
● How does the process work with ambiguous paths (loops)?
● Does this process identify the optimal path?

Weighted Graphs

Network Example
● In the network, each wire might have a "cost" associated with using the

wire. The cost could be the amount of energy required to use the path, or
the amount of time required for the wire to transmit a message, etc.

● We want to find the path with the lowest total cost
○ (the path with the lowest possible sum of its edge costs - shortest

path).

Weighted Graph Contd.

● Use a digraph in which each
edge has a non-negative value
attached to it, called the weight
or cost of the edge.

ICE 11.1 Weighted Graph

Questions:
1. How many paths are there

from V0 to V2?
2. What is the path with the

lowest total cost (shortest
path)?

Concepts

● A weighted edge is an edge together with a non-negative integer called the
edge's weight.

● The weight of a path is the total sum of the weights of all the edges in the
path.

● If two vertices are connected by at least one path, then we can define the
shortest path between two vertices, which is the path that has the smallest
weight.
○ Note: (There may be several paths with equally small weights, in which case each of the

paths is called "smallest").

Shortest Path

● Finding the shortest path is extremely useful (real-world application):
○ So… How can we find it... programmatically

● Let’s Define the problem

Shortest Path Definition

Given a directed graph:

● G = (V, E)
● edge-weight function w: E -> R
● path p = v1->v2-> ... ->vk
● weight of p, denoted w(p), is w(v1, v2) + w(v2, v3) + ... + w(vk-1, vk).

A shortest path weight δ(u, v) from u to v is the weight of any such shortest path:

● δ(u, v) = min{w(p): p is a path from u to v}
● If there is no path from u to v, then neither is there a shortest path from u to v.

○ Define δ(u, v) = ∞ in this case.

Shortest Path Contd.

● A shortest path from u to v might not exist, even though there is a path
from u to v.

● Note: When the edges have negative edge weights, some shortest paths
may not exist.
○ Example: Negative weights...

● Negative weight cycle: c = v1->v2-> ... ->vk->v1 has w(c) < 0.
○ Define δ(u, v) = -∞ if there's a path from u to v that visits a negative weight cycle.

Shortest Path Problem

Problem:

From a given source vertex s in V, find the shortest path weights for all vertices in V.

Solution:

Given a directed graph G = (V, E) with edge-weight function w: E -> R, and a source vertex
s

compute δ(s, v) for all v in V.

Shortest Path Solutions

● Single-Source Shortest Path Algorithms

○ Relaxation algorithm: framework for most shortest path problems. Not
necessarily efficient

○ Bellman-Ford algorithm: deals with negative weights, slow but polynomial
○ Dijkstra's algorithm: fast, requires non-negative weights

Brute Force Method

Pseudocode

Distance(s, t):

 for each path p from s to t:

compute w(p)

 return p encountered with smallest w(p)

Problems

● The number of paths can be infinite when
there's negative-weight cycles.

● Let’s assume there's no negative-weight
cycles, the number of paths can be
exponential.

Can be very inefficient….

Are there better ways?

Relaxation Method

Overview:

● Compute the distances instead of the
shortest path.

● Once the minimum distance is computed,
the path that makes the distance can be
easily found.

Steps:

● Distance from any vertex to itself = 0
● Begin with overestimated distance to

every vertex, set distance to positive
infinity

● Iterate over the edges, factoring in the
distance cost to each vertex.
○ If a distance is found with a lower cost,

update the distance.

Relaxation Method Contd.

Pseudocode

for v in V:

v.d = infinity

s.d = 0

while some edge (u, v) has v.d > u.d + w(u,v):

pick such an edge (u, v)

 relax(u, v):

if v.d > u.d + w(u,v):

 v.d = u.d + w(u,v)

Note:

● Iterate over the edges, factoring in the distance
cost to each vertex.
○ If a distance is found with a lower cost,

update the distance.
○ This means a shorter path to v by way of u

Relaxation Pitfalls

1. If a negative-weight cycle is reachable
from source s, then the relaxation can
never terminate.

2. A poor choice of relaxation order can lead
to exponentially many relaxations.

Pseudocode

for v in V:

v.d = infinity

s.d = 0

while some edge (u, v) has v.d > u.d + w(u,v):

pick such an edge (u, v)

 relax(u, v):

if v.d > u.d + w(u,v):

 v.d = u.d + w(u,v)

Bellman-Ford Algorithm

● The Bellman-Ford algorithm: computes single-source shortest paths in a
weighted diagraph.
○ Named after its developers, Richard Bellman and Lester Ford, Jr.

● The Bellman-Ford algorithm is used primarily for graphs with negative
weights.

Bellman-Ford Limits

● Note: The algorithm can detect negative cycles and report their existence,
but it cannot produce a correct "shortest path" if a negative cycle is
reachable from the source.

● For graphs with non-negative weights, Dijkstra's algorithm (next lecture)
solves the problem. Make sure to consider the limits when picking an
algorithm to solve a problem.

Bellman-Ford Algorithm

Pseudocode Process

● The algorithm simply relaxes all the edges,
and does this |V|-1 times

● |V| is the number of vertices in the graph.
● The repetitions allow minimum distances

to propagate accurately throughout the
graph, since in the absence of negative
cycles, the shortest path can visit each
node at most only once.

Bellman-Ford Example

Problem: Find the shortest path from 0 to all
other vertices

Bellman-Ford Example

Bellman-Ford Example

Bellman-Ford Example

Bellman-Ford Example

Begin 1st Iteration

Begin 2nd Iteration

3rd Iteration omitted for brevity
(no changes to distances were found)

Bellman-Ford Performance

Best Case: O(|E|)

● Graph is a simple chain, only path is the optimal path.

Worst Case: O(|V||E|)

● Outer for loop runs at |V|
● Inner for loop runs at |E|

References

Bellman-Ford

https://www.youtube.com/watch?v=hxMWBBCpR6A

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

https://www.youtube.com/watch?v=hxMWBBCpR6A
https://www.youtube.com/watch?v=hxMWBBCpR6A
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

