11 - Pathfinding

Joseph Afework CS 241

Dept. of Computer Science California Polytechnic State University, Pomona, CA

Agenda

- Intro
- Shortest Path
- Weighted Edges
- Single-Source Shortest Path Algorithms
 - Brute force Method
 - Relaxation Method
 - Bellman-Ford Algorithm
 - Dijkstra's Algorithm (next lecture)

Reading Assignment

- Read Chapter 28 Graphs
 - Chapter 23 (Read about: **Examples and Terms, Traversals, DFS, BFS**)

Path

Consider a network: Wireless Network Wired Ethernet Network 1 6.9. Hardware Access Point S. Computer with Software Access Point Wired Ethernet Network 2

Path

- Can you use DFS or BFS to find a path? YES
 - Start by performing DFS or BFS from (starting node)
 - Continue algorithm until (target node) is processed
 - If target node is not found: Path doesn't exist

Question:

- How does the process work with ambiguous paths (loops)?
- Does this process identify the optimal path?

Weighted Graphs

Network Example

- In the network, each wire might have a "**cost**" associated with using the wire. The cost could be the amount of energy required to use the path, or the amount of time required for the wire to transmit a message, etc.
- We want to find the path with the **lowest total cost**
 - (the path with the lowest possible sum of its edge costs shortest path).

Weighted Graph Contd.

 Use a digraph in which each edge has a *non-negative* value attached to it, called the **weight** or **cost** of the edge.

ICE 11.1 Weighted Graph

Questions:

- 1. How many paths are there from V0 to V2?
- 2. What is the path with the lowest total cost (shortest path)?

Concepts

- A **weighted edge** is an edge together with a non-negative integer called the edge's weight.
- The **weight of a path** is the total *sum* of the weights of all the edges in the path.
- If two vertices are connected by at least one path, then we can define the **shortest path** between two vertices, which is the path that has the smallest weight.
 - **Note:** (There may be several paths with equally small weights, in which case each of the paths is called "smallest").

Shortest Path

Finding the shortest path is extremely useful (real-world application):
 So... How can we find it... programmatically

• Let's Define the problem

Shortest Path Definition

Given a directed graph:

- *G* = (*V*, *E*)
- edge-weight function *w*: *E* -> *R*
- path $p = v_1 v_2 \dots v_k$
- weight of p, denoted w(p), is $w(v_1, v_2) + w(v_2, v_3) + ... + w(v_{k-1}, v_k)$.

A shortest path weight $\delta(u, v)$ from *u* to *v* is the weight of any such shortest path:

- $\delta(u, v) = \min\{w(p): p \text{ is a path from } u \text{ to } v\}$
- If there is no path from *u* to *v*, then neither is there a shortest path from *u* to *v*.
 - Define $\delta(u, v) = \infty$ in this case.

Shortest Path Contd.

- A shortest path from *u* to *v* might not exist, even though there is a path from *u* to *v*.
- Note: When the edges have negative edge weights, some shortest paths may not exist.
 - **Example:** Negative weights...
- <u>Negative weight cycle</u>: $c = v_1 v_2 \cdots v_k v_1$ has w(c) < 0.
 - Define $\delta(u, v) = -\infty$ if there's a path from *u* to *v* that visits a negative weight cycle.

Shortest Path Problem

Problem:

From a given source vertex s in V, find the shortest path weights for all vertices in V.

Solution:

Given a directed graph G = (V, E) with edge-weight function w: $E \rightarrow R$, and a source vertex s

compute $\delta(s, v)$ for all v in V.

Shortest Path Solutions

- Single-Source Shortest Path Algorithms
 - **Relaxation algorithm**: framework for most shortest path problems. Not necessarily efficient
 - Bellman-Ford algorithm: deals with negative weights, slow but polynomial
 - **Dijkstra's algorithm**: fast, requires non-negative weights

Brute Force Method

Pseudocode

Distance(s, t):

for each path *p* from *s* to *t*:

compute *w*(*p*)

return p encountered with smallest w(p)

Problems

- The number of paths can be infinite when there's negative-weight cycles.
- Let's assume there's no negative-weight cycles, the number of paths can be exponential.

Can be very inefficient....

Are there better ways?

Relaxation Method

Overview:

- Compute the distances instead of the shortest path.
- Once the minimum distance is computed, the path that makes the distance can be easily found.

Steps:

- Distance from any vertex to itself = 0
- Begin with overestimated distance to every vertex, set distance to positive infinity
- Iterate over the edges, factoring in the distance cost to each vertex.
 - If a distance is found with a lower cost, update the distance.

Relaxation Method Contd.

Pseudocode

for v in V:

v.d = infinity

s.d = 0

while some edge (u, v) has v.d > u.d + w(u,v):

```
pick such an edge (u, v)
```

relax(u, v):

if v.d > u.d + w(u,v):

v.d = u.d + w(u,v)

Note:

- Iterate over the edges, factoring in the distance cost to each vertex.
 - If a distance is found with a lower cost, update the distance.
 - This means a shorter path to \boldsymbol{v} by way of \boldsymbol{u}

Relaxation Pitfalls

Pseudocode

for v in V:

v.d = infinity

s.d = 0

```
while some edge (u, v) has v.d > u.d + w(u,v):
```

```
pick such an edge (u, v)
```

relax(u, v):

```
if v.d > u.d + w(u,v):
```

v.d = u.d + w(u,v)

 If a negative-weight cycle is reachable from source s, then the relaxation can never terminate.

2. A poor choice of relaxation order can lead to exponentially many relaxations.

Bellman-Ford Algorithm

- **The Bellman-Ford algorithm:** computes single-source shortest paths in a weighted diagraph.
 - Named after its developers, Richard Bellman and Lester Ford, Jr.

• The Bellman-Ford algorithm is used primarily for graphs with **negative** weights.

Bellman-Ford Limits

• Note: The algorithm can detect negative cycles and report their existence, but it cannot produce a correct "shortest path" if a negative cycle is reachable from the source.

• For graphs with non-negative weights, **Dijkstra's algorithm (next lecture)** solves the problem. Make sure to consider the limits when picking an algorithm to solve a problem.

Bellman-Ford Algorithm

Pseudocode

```
function BellmanFord:
```

```
// step 1: initialize graph
foreach v in V:
    v.d = infinity
s.d = 0
```

```
// step 2: relax edges repeatedly
for i from 1 to |V|-1:
    foreach edge (u, v) in E:
        if u.d + w(u, v) < v.d:
            v.d = u.d + w(u, v)</pre>
```

```
// step 3: check for negative-weight cycles
foreach edge (u, v) in E:
    if u.d + w(u, v) < v.d:
        error "Graph contains a negative-weight cycle"</pre>
```

Process

- The algorithm simply relaxes all the edges, and does this |V|-1 times
- |*V*| is the number of vertices in the graph.
- The repetitions allow minimum distances to propagate accurately throughout the graph, since in the absence of negative cycles, the shortest path can visit each node at most only once.

Problem: Find the shortest path from 0 to all other vertices

u = start vertex

v = end vertex

 $\mathbf{u} \rightarrow \mathbf{v} =$ directed edge from vertex u to v

 $w(u,v) = weight of the directed edge u \rightarrow v$

Edge	Weight
0 → 1	5
0 → 2	2
1 → 0	3
1 → 3	4
2 → 3	6
3 → 0	-1

if there are **N** vertices then we will iterate **N - 1** times to get the shortest distance

and we do the **Nth** iteration to check if there is any negative cycle

the graph has 4 vertices so we will iterate 3 times to find shortest distance

and we will perform the 4th iteration to check if there is any negative cycle

	0	1	2	3
d				

	0	1	2	3
р				

Edge	Weight
0 → 1	5
0 → 2	2
1 → 0	3
1 → 3	4
2 → 3	6
3 → 0	-1

array **d** contains the distance to the respective vertices from the source vertex

array ${\bf p}$ contains the predecessor of the respective vertices

	0	1	2	3
d	0	∞	∞	∞

	0	1	2	3
р				

Edge	Weight
0 → 1	5
0 → 2	2
1 → 0	3
1 → 3	4
2 → 3	6
3 → 0	-1

now we fill the predecessor array **p** with -

Relax Edge

Consider an edge $u \rightarrow v$ where u is the start and v is the end vertex respectively. Relaxing an edge **relax(u,v)** means to find shorter path to reach v when considering edge $u \rightarrow v$

```
relax(u,v)
if v.d > u.d + w(u,v) then
v.d = u.d + w(u,v)
v.p = u
```

so, if there exists a better path to reach vertex v then we update the distance and predecessor of vertex v

where

```
v.d = distance from source vertex 0 to vertex v
```

```
u.d = distance from source vertex 0 to vertex u
```

```
w(u,v) = weight of the edge u \rightarrow v
```

```
v.p = predecessor of vertex v
```


Begin 1st Iteration

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-
$2 \xrightarrow{6} 3$	
0.d 1.d	
EdgeWeightput 5 in 1.d and 0 in 1.p	
$0 \rightarrow 1$ 5 \leftarrow w(0,1) iteration 1	. – 0
$0 \rightarrow 2$ 2 consider the edge $0 \rightarrow 1$ end vertex v	r = 0 r = 1
$1 \to 0$ 3 $u.d = 0.d = 0$ relax(0,1):	
$1 \rightarrow 3$ 4 $v.d = 1.d = \infty$ is $1.d > 0.d + w(0,1)$	
$2 \rightarrow 3$ 6 $w(u,v) = w(0,1) = 5$ YES	
$3 \rightarrow 0$ -1 so, v.d = 1.d = 0 + 5 = 5	

	_												
	5 3)		1	2	3			0	1	2	3	
2	-1	4	d	0	5	~	~		р	-	0	-	-
2	6 3)		 0.d	 1.d								
Edge	Weight						put §	5 in	1.d a	nd 0	in 1.p)	
0 → 1	5 🗲	— w(0,1)	iterati	iteration 1						c.	tart vi	ortov	– 0
0 → 2	2		consid	consider the edge 0						e	nd ve	ertex	u = 0 / = 1
1 → 0	3		u.d =	0.d =	= 0		rela	ıx(0,	1):				
1 → 3	4		v.d =	$v.d = 1.d = \infty$			is 1	.d >	0.d	+ w(C),1)		
2 → 3	6		w(u,v) = w	(0,1)	= 5	YES	5 7 0	J + J				
3 → 0	-1						SO,	v.d	= 1.d	= 0	+ 5 =	5	
							anc	1, V.K	D = 1.	$p = \iota$	J = 0		

	0	1	2	3
р	-	0	-	-

Weight Edge put 2 in 2.d and 0 in 2.p iteration 1 $0 \rightarrow 1$ 5 start vertex u = 0 $0 \rightarrow 2$ ² ← w(0,2) consider the edge $0 \rightarrow 2$ end vertex v = 2 $1 \rightarrow 0$ 3 u.d = 0.d = 0relax(0,2): is 2.d > 0.d + w(0,2) $1 \rightarrow 3$ 4 $v.d = 2.d = \infty$ is $\infty > 0 + 2$ $2 \rightarrow 3$ 6 w(u,v) = w(0,2) = 2YES so, v.d = 2.d = 0 + 2 = 2 $3 \rightarrow 0$ -1 and, v.p = 2.p = u = 0

	0	1	2	3
р	-	0	0	-

Edge	Weight	
0 → 1	5	
0 → 2	2 🗲	– w(0,2)
1 → 0	3	
1 → 3	4	
2 → 3	6	
3 → 0	-1	

put 2 in 2.d and 0 in 2.p iteration 1 start vertex u = 0consider the edge $0 \rightarrow 2$ end vertex v = 2u.d = 0.d = 0relax(0,2): is 2.d > 0.d + w(0,2) $v.d = 2.d = \infty$ is $\infty > 0 + 2$ w(u,v) = w(0,2) = 2YES so, v.d = 2.d = 0 + 2 = 2and, v.p = 2.p = u = 0

	0	1	2	3
р	-	0	0	-

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3 🗲	— w(1
1 → 3	4	
2 → 3	6	
3 → 0	-1	

iteration 1 consider the edge $1 \rightarrow 0$ (1,0) u.d = 1.d = 5 v.d = 0.d = 0 w(u,v) = w(1,0) = 3 iteration 1 start vertex u = 1 end vertex v = 0 relax(1,0): is 0.d > 1.d + w(1,0) NO

	5 3			0	1	2	3			0	1	2	3
2	-1	4	d	0	5	2	~		р	-	0	0	-
2	6 → 3		2		<u> </u>		Ť						
					1.d		3.d						
Edge	Weight						put 9) in (3.d ai	nd 1 i	n 3.p)	
0 → 1	5		iterati	on 1						S	tart vi	ortov	ıı — 1
0 → 2	2		consid	der th	ne ed	ge 1	→ 3			e	nd ve	ertex	v = 3
1 → 0	3		u.d =	1.d =	= 5		rela	ιx(1,	3):				
1 → 3	4 🗲	– w(1,3)	v.d =	3.d =	. ∞		is 3	.d >	• 1.d	+ w(1	,3)		
2 → 3	6		w(u,v) = w	(1,3)	= 4	YES	5	5 - 4				
3 → 0	-1						SO,	v.d	= 3.0	= 5	+ 4 =	9	
							anc	1, V.K	c = 3	.p = ι	1 = 1		

	5 3			0	1	2	3			0	1	2	3
2	-1	4	d	0	5	2	9		р	-	0	0	1
2	6 → 3	1			T 1.d		f 3.d						
Edge	Weight						put 9) in (3.d ai	nd 1 i	n 3.p	1	
0 → 1	5		iterati	on 1							tart v	ortov	– 1
0 → 2	2		consi	der th	ne ed	ge 1	→ 3			e	nd ve	ertex	v = 3
1 → 0	3		u.d =	1.d =	= 5		relax(1,3):						
1 → 3	4 🗲	— w(1,3)	v.d =	$v.d = 3.d = \infty$			is $3.d > 1.d + w(1,3)$						
2 → 3	6		w(u,v) = w	(1,3)	= 4	YES	5 2 3) + 4				
3 → 0	-1						so, anc	v.d 1, v.p	= 3.d	l = 5 · .p = ι	+ 4 = J = 1	9	

	0	1	2	3
р	-	0	0	1

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4	
2 → 3	6 🗲	– w(2
3 → 0	-1	

put 8 in 3.d and 2 in 3.p iteration 1 start vertex u = 2consider the edge $2 \rightarrow 3$ end vertex v = 3u.d = 2.d = 2relax(2,3): is 3.d > 2.d + w(2,3)v.d = 3.d = 9is 9 > 2 + 62,3) w(u,v) = w(2,3) = 6YES so, v.d = 3.d = 2 + 6 = 8and, v.p = 3.p = u = 2

	0	1	2	3
р	-	0	0	2

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4	
2 → 3	6 🗲	– w(2
3 → 0	-1	

put 8 in 3.d and 2 in 3.p iteration 1 start vertex u = 2consider the edge $2 \rightarrow 3$ end vertex v = 3u.d = 2.d = 2relax(2,3): is 3.d > 2.d + w(2,3)v.d = 3.d = 9is 9 > 2 + 62,3) w(u,v) = w(2,3) = 6YES so, v.d = 3.d = 2 + 6 = 8and, v.p = 3.p = u = 2

	0	1	2	3
р	-	0	0	2

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4	
2 → 3	6	
3 → 0	-1 ←	- w(3,0)

iteration 1 consider the edge $3 \rightarrow 0$ u.d = 3.d = 8 v.d = 0.d = 0 w(u,v) = w(3,0) = -1 NO iteration 1 start vertex u = 3 end vertex v = 0 is 0.d > 3.d + w(3,0) is 0 > 8 + -1

Begin 2nd Iteration

	0	1	2	3
р	-	0	0	2

Edge	Weight			
0 → 1	5 🗲	– w(0,1)	iteration 2	
0 → 2	2		consider the edge 0 ·	→ 1
1 → 0	3		u.d = 0.d = 0	rol
1 → 3	4		v.d = 1.d = 5	is
2 → 3	6		w(u,v) = w(0,1) = 5	is NC
3 → 0	-1			INC

start vertex u = 0end vertex v = 1

= 0 relax(0,1): = 5 is 1.d > 0.d + w(0,1)is 5 > 0 + 5 v(0,1) = 5NO

Maight

Lalara

	0	1	2	3
р	-	0	0	2

Euge	weight		
0 → 1	5		itera
0 → 2	2 🗲	– w(0,2)	cons
1 → 0	3		u.d =
1 → 3	4		v.d =
2 → 3	6		w(u,
$3 \rightarrow 0$	-1		

iteration 2 consider the edge $0 \rightarrow 2$ u.d = 0.d = 0 v.d = 2.d = 2 w(u,v) = w(0,2) = 2 relax(0,2): is 2.d > 0.d + w(0,2) is 2 > 0 + 2 NO so, we move to the next edge

	0	1	2	3
р	-	0	0	2

Edge	Weight		
0 → 1	5		itera
0 → 2	2		con
1 → 0	3 🗲	– w(1,0)	u.d
1 → 3	4		v.d
2 → 3	6		w(u
3 → 0	-1		

iteration 2 consider the edge $1 \rightarrow 0$ u.d = 1.d = 5 v.d = 0.d = 0 w(u,v) = w(1,0) = 3 iteration 2 start vertex u = 1 end vertex v = 0 relax(1,0): is 0.d > 1.d + w(1,0) NO

	0	1	2	3
р	-	0	0	2

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4 🗲	– w(
2 → 3	6	
3 → 0	-1	

iteration 2 consider the edge $1 \rightarrow 3$ u.d = 1.d = 5 1,3) v.d = 3.d = 8 w(u,v) = w(1,3) = 4 iteration 2 start vertex u = 1 end vertex v = 3 relax(1,3): is 3.d > 1.d + w(1,3) is 8 > 5 + 4 NO so, we move to the next edge

	0	1	2	3
р	-	0	0	2

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4	
2 → 3	6 🗲	— v
3 → 0	-1	

iteration 2 consider the edge $2 \rightarrow 3$ u.d = 2.d = 2 v.d = 3.d = 8 v(2,3) w(u,v) = w(2,3) = 6 iteration 2 start vertex u = 2 end vertex v = 3 is 3.d > 2.d + w(2,3) is 8 > 2 + 6 NO

	0	1	2	3	
d	0	5	2	8	
T T					
0.d 3.d				3.d	

	0	1	2	3
р	-	0	0	2

Edge	Weight	
0 → 1	5	
0 → 2	2	
1 → 0	3	
1 → 3	4	
2 → 3	6	
3 → 0	-1 🗲	— w(3,0)

iteration 2 consider the edge $3 \rightarrow 0$ u.d = 3.d = 8 v.d = 0.d = 0 w(u,v) = w(3,0) = -1 iteration 2 start vertex u = 3 end vertex v = 0 relax(3,0): is 0.d > 3.d + w(3,0) is 0 > 8 + -1 NO we reached the last edge so its time to move to iteration 3 **3rd Iteration omitted for brevity** (no changes to distances were found) after completing iteration 3 we get the shortest distance now in order to check if there is no negative cycle we have to perform the 4th iteration

if there is a change in value even in the 4th iteration then there is a negative cycle and we cannot determine the shortest distance If there is no change in the distance and predecessor array in **i**th iteration then we can skip the iterations following the ith iteration as we will not get any change in those iterations

Bellman-Ford Performance

Best Case: O(|E|)

• Graph is a simple chain, only path is the optimal path.

Worst Case: O(|V||E|)

- Outer for loop runs at |V|
- Inner for loop runs at |E|

References

Bellman-Ford

https://www.youtube.com/watch?v=hxMWBBCpR6A

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm